Some Stata Commands

Last modified: January 2, 2006 9:51AM

General Plotting Commands

1. Plot a histogram of a variable:
 `histogram vname`
2. Plot a histogram of a variable using frequencies:
 `histogram vname, freq`
 `histogram vname, bin(xx) norm`
 where `xx` is the number of bins.
3. Plot a boxplot of a variable:
 `graph box vname`
4. Plot side-by-side box plots for one variable (vone) by categories of another variable
 vtwo. (vtwo should be categorical):
 `graph box vone, over(vtwo)`
5. A scatter plot of two variables:
 `scatter vone vtwo`
6. A matrix of scatter plots for three variables:
 `graph matrix vone vtwo vthree`
7. A scatter plot of two variables with the values of a third variable used in place of points
 on the graph (vthree might contain numerical values or indicate categories, such as
 male ("m") and female ("f")):
 `scatter vone vtwo, symbol([vthree])`
8. Normal quantile plot:
 `qnorm vname`

General commands

1. To compute means and standard deviations of all variables:
 `summarize`
 or, using an abbreviation,
 `summ`
2. To compute means and standard deviations of select variables:
 `summarize vone vtwo vthree`
3. Another way to compute means and standard deviations that allows the `by` option:
 `tabstat vone vtwo, statistics(mean, sd) by(vthree)`
4. To get more numerical summaries for one variable:
 `summ vone, detail`
5. See help tabstat to see the numerical summaries available. For example:
 `tabstat vone, statistics(min, q, max, iqr, mean, sd)`

6. Correlation between two variables:
 `correlate vone vtwo`

7. To see all values (all variables and all observations, not recommended for large data sets):
 `list`
 Hit the space bar to see the next page after "-more-" or type "q" to "break"

 (stop/interrupt the listing).

8. To list the first 10 values for two variables:
 `list vone vtwo in 1/10`

9. To list the last 10 values for two variables:
 `list vone vtwo in -10/l`
 (The end of this command is "minus 10" / "lowercase letter L").

10. Tabulate categorical variable `vname`:
 `tabulate vname`
 or, using an abbreviation,
 `tab vname`

11. Cross tabulate two categorical variables:
 `tab vone vtwo`

12. Cross tabulate two variables, include one or more of the options to produce column, row or cell percents and to suppress printing of frequencies:
 `tab vone vtwo, column row cell`
 `tab vone vtwo, column row cell nofreq`

Generating new variables

1. General.
 a. Generate index of cases 1,2, ...,n (this may be useful if you sort the data, then want to restore the data to the original form without reloading the data):
 `generate case= _n`
 or, using an abbreviation,
 `gen case=_n`
 b. Multiply values in `vx` by `b` and add `a`, store results in `vy`:
 `gen vy = a + b * vx`
 c. Generate a variable with values 0 unless `vtwo` is greater than `c`, then make the value 1:
 `gen vone=0`
 `replace vone=1 if vtwo>c`
 d.

2. Random numbers.
a. Set numbers of observations to \(n \):
   ```stata
   set obs n
   ```
b. Set random number seed to \(XXXX \), default is 1000:
   ```stata
   set seed XXXX
   ```
c. Generate \(n \) uniform random variables (equal chance of all outcomes between 0 and 1):
   ```stata
   gen vname=uniform()
   ```
d. Generate \(n \) uniform random variables (equal chance of all outcomes between \(a \) and \(b \)):
   ```stata
   gen vname=a + (b - a)*uniform()
   ```
e. Generate \(n \) discrete uniform random variables (equal chance of all outcomes between 1 and 6)
   ```stata
   gen vname=1 + int(6*uniform())
   ```
 (These commands simulate rolling a six-sided die.)
f. Generate normal data with mean 0 and standard deviation 1:
   ```stata
   gen vname= invnorm(uniform())
   ```
g. Generate normal data with mean \(\mu \) and standard deviation \(\sigma \):
   ```stata
   gen vname= \mu + \sigma * invnorm(uniform())
   ```

Regression

1. Compute simple regression line (\(vy \) is response, \(vx \) is explanatory variable):
   ```stata
   regress vy vx
   ```
2. Compute predictions, create new variable \(yhat \):
   ```stata
   predict yhat
   ```
3. Produce scatter plot with regression line added:
   ```stata
   graph twoway lfit vy vx || scatter vy vx
   ```
4. Compute residuals, create new variable \(residuals \):
   ```stata
   predict residuals, resid
   ```
5. Produce a residual plot with horizontal line at 0:
   ```stata
   graph residuals, yline(0)
   ```
6. Identify points with largest and smallest residuals:
   ```stata
   sort residuals
   list in 1/5
   list in -5/l
   ```
 (The last command is "minus 5" / "lowercase letter L".)
7. Compute multiple regression equation (\(vy \) is response, \(vthree \), \(vtwo \), and \(vvthree \) are explanatory variables):
   ```stata
   regress vy vone vtwo vthree
   ```

Important Notes on the "\texttt{stem}" command
In some versions of Stata, there is a potential glitch with Stata's `stem` command for stem-and-leaf plots. The `stem` function seems to permanently reorder the data so that they are sorted according to the variable that the stem-and-leaf plot was plotted for. The best way to avoid this problem is to avoid doing any stem-and-leaf plots (do histograms instead). However, if you really want to do a stem-and-leaf plot you should always create a variable containing the original observation numbers (called `index`, for example). A command to do so is:

```stata
generate index = _n
```

If you do this, then you can re-sort the data after the stem-and-leaf plot according to the `index` variable:

```stata
sort index.
```

Then, the data are back in the original order.

Summary of These and Other Commands

Here is a list of the commands demonstrated above and some other commands that you may find useful (this is by no means an exhaustive list of all Stata commands):

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>anova</code></td>
<td>general ANOVA, ANCOVA, or regression</td>
</tr>
<tr>
<td><code>by</code></td>
<td>repeat operation for categories of a variable</td>
</tr>
<tr>
<td><code>ci</code></td>
<td>confidence intervals for means</td>
</tr>
<tr>
<td><code>clear</code></td>
<td>clears previous dataset out of memory</td>
</tr>
<tr>
<td><code>correlate</code></td>
<td>correlation between variables</td>
</tr>
<tr>
<td><code>describe</code></td>
<td>briefly describes the data (# of obs, variable names, etc.)</td>
</tr>
<tr>
<td><code>diagplot</code></td>
<td>distribution diagnostic plots</td>
</tr>
<tr>
<td><code>drop</code></td>
<td>eliminate variables from memory</td>
</tr>
<tr>
<td><code>edit</code></td>
<td>better alternative to <code>input</code> for Macs</td>
</tr>
<tr>
<td><code>exit</code></td>
<td>leave Stata</td>
</tr>
<tr>
<td><code>generate</code></td>
<td>creates new variables (e.g., <code>generate years = last - first</code>)</td>
</tr>
<tr>
<td><code>graph</code></td>
<td>general graphing command (this command has many options)</td>
</tr>
<tr>
<td><code>help</code></td>
<td>online help</td>
</tr>
<tr>
<td><code>histogram</code></td>
<td>create a histogram graphic</td>
</tr>
<tr>
<td><code>if</code></td>
<td>lets you select a subset of observations (e.g., <code>list if radius >= 3000</code>)</td>
</tr>
<tr>
<td><code>infile</code></td>
<td>read non-Stata-format dataset (ASCII or text file)</td>
</tr>
<tr>
<td><code>input</code></td>
<td>type in raw data</td>
</tr>
</tbody>
</table>

http://www.stat.uchicago.edu/~collins/resources/stata/stata-commands.html
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>insheet</code></td>
<td>read non-Stata-format spreadsheet with variable names on first line</td>
</tr>
<tr>
<td><code>list</code></td>
<td>lists the whole dataset in memory (you can also list only certain variables)</td>
</tr>
<tr>
<td><code>log</code></td>
<td>save or print Stata output (except graphs)</td>
</tr>
<tr>
<td><code>lookup</code></td>
<td>keyword search of commands, often precursor to help</td>
</tr>
<tr>
<td><code>oneway</code></td>
<td>oneway analysis of variance</td>
</tr>
<tr>
<td><code>pcorr</code></td>
<td>partial correlation coefficients</td>
</tr>
<tr>
<td><code>plot</code></td>
<td>text-mode (crude) scatterplots</td>
</tr>
<tr>
<td><code>predict</code></td>
<td>calculated predicted values (y-hat), residuals (ordinary, standardized and studentized), leverages, Cook's distance, standard error of predicted individual y, standard error of predicted mean y, standard error of residual from regression</td>
</tr>
<tr>
<td><code>qnorm</code></td>
<td>create a normal quantile plot</td>
</tr>
<tr>
<td><code>regress</code></td>
<td>regression</td>
</tr>
<tr>
<td><code>replace</code></td>
<td>lets you change individual values of a variable</td>
</tr>
<tr>
<td><code>save</code></td>
<td>saves data and labels in a Stata-format dataset</td>
</tr>
<tr>
<td><code>scatter</code></td>
<td>create a scatter plot of two numerical variables</td>
</tr>
<tr>
<td><code>set</code></td>
<td>set Stata system parameters (e.g., obs and seed)</td>
</tr>
<tr>
<td><code>sebarr</code></td>
<td>standard error-bar chart</td>
</tr>
<tr>
<td><code>sort</code></td>
<td>sorts observations from smallest to largest</td>
</tr>
<tr>
<td><code>stem</code></td>
<td>stem and leaf display</td>
</tr>
<tr>
<td><code>summarize</code></td>
<td>produces summary statistics (# obs, mean, sd, min, max) (has a detail option)</td>
</tr>
<tr>
<td><code>tabstat</code></td>
<td>produces summary statistics of your choice</td>
</tr>
<tr>
<td><code>tabulate</code></td>
<td>produces counts/frequencies for categorical data</td>
</tr>
<tr>
<td><code>test</code></td>
<td>conducts various hypothesis tests (refers back to most recent model fit (e.g., <code>regress</code> or <code>anova</code>) (see help function for info and examples))</td>
</tr>
<tr>
<td><code>ttest</code></td>
<td>one and two-sample t-tests</td>
</tr>
<tr>
<td><code>use</code></td>
<td>retrieve previously saved Stata dataset</td>
</tr>
</tbody>
</table>